Morphological quantification of proliferation-to-invasion transition in tumor spheroids

Yi He, Ling Xiong, Xuejuan Gao, Miaomiao Hai, Yanping Liu, Gao Wang, Guo Chen, Jianwei Shuai, Yang Jiao, Xixiang Zhang, Ruchuan Liu, Liyu Liu

Abstract

Background: Metastasis determines the lethality of cancer. In most clinical cases, patients are able to live with tumor proliferation before metastasis. Thus, the transition from tumor proliferation to metastasis/invasion is essential. However, the mechanism is still unclear and especially, the proliferation-to-metastasis/invasion transition point has not been well defined. Therefore, quantitative characterization of this transition is urgently needed.

Methods: We have successfully developed a home-built living-cell incubation system combined with an inverted optical microscope, and a systematic, quantitative approach to describing the major characteristic morphological parameters for the identification of the critical transition points for tumor-cell spheroids in a collagen fiber scaffold.

Results: The system focuses on in vitro tumor modeling, e.g. the development of tumor-cell spheroids in a collagen fiber scaffold and the monitoring of cell transition from proliferation to invasion. By applying this approach to multiple tumor spheroid models, such as U87 (glioma tumor), H1299 (lung cancer), and MDA-MB-231 (breast cancer) cells, we have obtained quantitative morphological references to evaluate the proliferation-to-invasion transition time, as well as differentiating the invasion potential of tumor cells upon environmental changes, i.e. drug application.

Conclusions: Our quantitative approach provides a feasible clarification for the proliferation-to-invasion transition of in vitro tumor models (spheroids). Moreover, the transition time is a useful reference for the invasive potential of tumor cells.

General significance: This quantitative approach is potentially applicable to primary tumor cells, and thus has potential applications in the fields of cancer metastasis investigations and clinical diagnostics.

1. Introduction

Metastasis is the primary cause of malignant cancers, which can result in the death of cancer patients [1,2]. Among the multiple processes involved in metastasis, tumor-cell invasion is the crucial step. Previous work demonstrated that tumor cells can invade in a three-dimensional (3-D) environment via different ways, i.e. as single cells [1,3,4], or as collective forms (i.e. protrusions, cell sheets) [5–11]. Collective cell invasion has been observed in pathological samples of oral squamous carcinomas, ductal breast carcinomas, and rhabdomyosarcoma [10,12]. To reveal their mechanisms, numerous methods have been developed in laboratory, including theoretical models of morphology [13,14], interfacial geometry [15], morphology of cells [16], lab-on-a-chip microfluidic devices [17], ultrasound [18], Raman technique [19], image analysis [20–22], etc. Traditionally, the Transwell assay has been a widely commercialized technique for evaluating tumor-cell invasiveness [23,24], although it still has limitations due to its non-three-dimensional microenvironment. In contrast, multicellular tumor spheroids (MCTS) are the most used as in vitro 3-D models for collective cancer metastasis [25–27]. In these studies, the collective invasions of spheroids have been extensively investigated. To date, the majority of studies of cancer-cell invasion have focused on the proliferation processes or post-invasion processes and the mechanisms at either stage [28–31]. However, study on the transition, i.e. how tumor
proliferation evolves into collective invasion is still lacking. Nevertheless, the proliferation-to-invasion (PTI) transition is an essential step, but is insufficiently defined, likely because of technical limitations. In addition, this transition point could also be critical in the evaluation of the potential for tumor-cell invasion, and thus its quantitative characterization is urgently needed. In this decade, for the detection of cell migration or invasion in vitro, the IncuCyte™ (Essen BioScience) chemotaxis system is one of a commercially devices, which is a high through-put integrated system for real-time visualization and automated analysis of chemotactic cell migration/invasion within a tissue culture incubator. Although these systems are sophisticated, the high cost of setting up these kinds of instruments is one of the main disadvantages [32]. Whereas, we customized a home-built living-cell incubation system, developed an automated and quantitative approach to provide a feasible clarification for the PTI transition of the in vitro tumor spheroid models.

2. Materials and methods

2.1. Cell culture and extracellular matrix preparation

U87 (glioma tumor) cells were obtained from the Institute of Biochemistry and Cell Biology, Chinese Academy of Science (Shanghai, China), H1299 (lung cancer) cells were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China), MDA-MB-231 cells were obtained from China Infrastructure of Cell Line Resources (Beijing, China). All U87 cells, H1299 cells and MDA-MB-231 cells were labeled with green fluorescent protein (GFP) and GFP were transfected into cells of three cell lines by lentivirus infection method. Culture media were DMEM/F12 medium (10–092-CVR, Corning, USA) for U87 cells, RPMI 1640 medium (10–040-CVR, Corning, USA) for H1299 cells, DMEM medium (10–013-CVR, Corning, USA) for MDA-MB-231 cells. In all media, 10% fetal bovine serum (FBS, 35–010-CV, Corning, USA) and 1% penicillin/streptomycin (P/S, 30–002-CI, Corning, USA) were supplemented. All cells were cultured in an incubator (C150, Binder, Germany) at 37.0 °C with 5.0% CO₂.

According to the manufacturer’s instructions, Neutralized collagen I solutions were prepared by mixing buffer solutions of sterile deionized water, 10 × PBS (70013–032, Gibco, USA) and 1 mol/L NaOH (795,429, Sigma-Aldrich, USA) with the high concentration collagen I (354,249, Corning, USA) on ice-pack. The final collagen I concentration was 2.0 mg/mL for all the tests.

2.2. Spheroids formation

In this study, we present a systematic in vitro approach (Fig. 1) to analyzing cell invasiveness quantitatively utilizing MCTS as 3-D models. In this approach, we combine the MCTS technique with a home-built living-cell incubation system on top of a microscope to track the changes in morphology of spheroids. From time snapshots of each spheroid, we analyzed the images and designed a set of morphological aspects to define the critical time of PTI transition (Fig. 1(a)) for MCTS. Spheroids were formed by a method similar to that reported by Ivascu et al [33]. During spheroid formation, the incubation media were same as the corresponding culture media above, except 3.5% Matrigel (356,237, Corning, USA) was also added to the culture medium for MDA-MB-231 cells. This transition time could be an excellent reference for the PTI transition of in vitro tumor spheroid models.

2.3. Fabrication of home-built living-cell device

A home-built incubator was then used to maintain a stable and uniform temperature, CO₂ concentration, and humidity for the spheroid culture on top of optical microscope. As illustrated in Fig. 1(c) and (d), the customized living-cell system consisted of a controller and a sealed chamber to hold the plate. A water groove maintained the humidity of incubator inside to reduce evaporation of culture medium. Four heaters and four temperature sensors located in the chamber stage, near the spheroids, the chamber cap, the water bath, and the microscope objective, maintained a uniform temperature of 37.0 °C. This design enabled a stable culture temperature and humidity around spheroids in the chamber to be maintained, which was essential for extended live imaging during the entire PTI transition process. There was also a gas inlet admitting 5.0% CO₂, as monitored by the controller, to maintain a pH of ~ 7.4 in the medium.

2.4. Image processing

The spheroid was imaged by a CCD camera (Neo 5.5 sCMOS, Andor,
USA), the imaging rate was 10 min per frame for U87 spheroids. The light intensity was 130 mW and the exposure time was set at 200 ms. Fig. 2(a) illustrates the procedure for image processing. First, each fluorescent image was transformed into a grayscale image. Next, all fluorescence noises were reduced using the built-in functions of MATLAB software (MathWorks, USA). Then, Otsu’s method [37] was applied to automatically transform the smoothed grayscale image into a binary one. Subsequently, all holes inside were filled, and the largest connected component was identified as the spheroid. Finally, the centroid of spheroid and the distance of boundary to the center were calculated for further analysis. The overlap of boundaries at 0, 40, 80, and 120 min of the same sample are displayed in Fig. 2(b) (see Fig. S2 for all images).

2.5. Boundary smoothing

Further processing of the raw boundary data is described in Fig. 3. Since the raw boundary data (Fig. 3(a1)) are not uniform in size across time frames and spheroids, a unified polar coordinate system is more appropriate for reformatting the boundary. Using an image resolution of 2560 × 2160 pixels, the circumference of the spheroid edge was divided equally into 300, 600, or 720 portions, and no distinct difference was found in following PTI identification. Thus, all following analysis used 300 portions for division. In most of divided parts (Fig. 3(a2)), there are multiple boundary points connected to each other in a complicated manner. To eliminate this complexity, while still catching the protrusion characteristics of collective cell invasion, the maximum distance (d) of data points from centroid was used as the representative radial coordinate for each divided part, as displayed in Fig. 3(a2–a3). Finally, smoothed boundary was presented in Fig. 3(a4).

2.6. Boundary identification

The smoothed and well-formatted boundary (Fig. 3(a4)) was further transferred to the frequency domain using discrete Fourier transform (DFT) in MATLAB. In this domain, the frequency describes the sharpness of boundary variations. The collective tumor cell invasion leads to sharp protrusions from spheroids, in contrast to the relatively smooth boundary during tumor-cell proliferation. Therefore, the high-frequency portion of DFT trajectory contains the morphology changes due to invasion, while the low-frequency portion is “baseline”. Empirically, the separation frequency (Fig. 3(b)) is 15, and the corresponding low-frequency portion displays the major feature of smooth boundary of proliferation (see SI Fig. S4 for details). It can be seen from Fig. 3(c) that frequency filtration of boundary data (d_{hf}) successfully catches the sharp protrusions by removing the large, but smooth, features of Fig. 2.

![Fig. 2. Flowchart of the spheroid boundary analysis. (a) Work flow of image processing. The original fluorescence image was gray scaled, then smoothed to remove background noises, and finally spheroid was identified as the largest connected component in the center. Scale bar, 200 μm. (b) The boundaries of the identified spheroid (U87 cells) at 0, 40, 80, and 120 min.](image-url)

![Fig. 3. Boundary analysis procedure. The result from a U87 spheroid is presented as a demonstration. The original spheroid boundary (a1) at 50 min in the polar coordinate is divided into 300 sections. The boundary data in each radian section (a2) is utilized to define the corresponding edge value by the furthest point to the center (a3); consequently, this process results in a smoothed boundary (a4) for further analysis. (b) The discrete Fourier transform of boundary into the frequency domain, where the high-frequency component (> 15) is chosen (blue) for the sharp protrusion boundary, resulted from collective cell invasion (see SI Fig. S4 for details of choosing the separation frequency). (c) The distance of boundary from the center vs. radian: smoothed boundary (d, red), the high frequency component (d_{hf}, blue), the low frequency component (d_{lf}, purple), and the average value (d_{avg}, cyan) from the low-frequency component. (d) The trajectories of perimeter^2-to-area ratio (rpta) and the standard deviation of relative boundary-to-center distance (d_{std}) of this U87 spheroid vs. tracking time. The PTI transition time is identified to be 40 min from both trajectories.](image-url)
proliferation morphology.

3. Results and discussion

Significant morphological changes are usually the sign of a transition from proliferation to invasion for “invasion-competent” tumor spheroids. In contrast, “invasion-incompetent” spheroids (i.e. MCF-10A) undergo only some non-invasive expansive growth in collagen environment [28]. In previous work, morphological parameters were utilized to quantify a spheroid invasion feature, such as geometric parameters (spheroid area, perimeter, radius, and volume) [7, 21, 30, 38–40], isolation of core and invasive compartments [7, 21, 38, 41], surface roughness or irregularity [7, 39, 42, 43]. These methods have provided useful references to this study. To identify the PTI transition, morphological features, i.e. area and boundary variations, are useful for this purpose. First, invasion protrusions of spheroids are expected to result in larger increments to the perimeters of their 2-D images than the enclosed area [42]. In contrast, the proliferation of spheroids increases both perimeter and area comparably. Therefore, we define a dimensionless perimeter-to-area ratio (r_{pta}) to quantify the irregular shape of spheroids as a result of collective cell invasion. The sharp change appearing in the first derivative of r_{pta} was defined as transition time. The r_{pta} for a U87 spheroid (Fig. S3(d), black curve) clearly displays a large increment between 40 and 50 min. This suggests the PTI transition time (t_{pti}) of 40 min for this spheroid. Furthermore, the invasion protrusions also result in an increase in the roughness of the spheroid circumference, which could be characterized by the standard deviation [43], d_{std}, of the relative boundary-to-center distances (i.e. d_{bf}/d_{avg}). The result in Fig. S3(d) (red curve) gives a similar t_{pti} of 40 min as transition time where the sharp change appeared in the first derivative of d_{std}.

Due to parameter r_{pta} and parameter d_{std} not well determine their mathematical transition points, the parameters describing protrusions characteristics of tumor-cell invasion of spheroids are considered. The protrusions exhibit various outreach heights and shapes, i.e. the protrusion height (h) [7] and the height-to-width ratio (r_{htw}) [11]. While there are many protrusions, only a limited number of them are invasion-related. This is because invasive protrusions are expected to be rare events at the PTI transition, i.e. the starting point of collective cell invasion. Taking all protrusions of a spheroid at each time snapshot into account, the statistics of h and r_{htw} (see definitions in Fig. S5) gives the two-dimensional probability distribution (Fig. 4(a)) for the aforementioned U87 spheroid. The majority of protrusions (i.e. with small h and low r_{htw}) display a dense, large domain at the bottom-left corner of the histogram. Such protrusions exist even before the start of invasion, and thus are due to the proliferation dynamics of tumor spheroids. In contrast, the upper-right corner of the histogram (yellow square in Fig. 4(a)) includes domains of limited probability, corresponding to protrusions with both large h and high r_{htw}. Since the proliferation of tumor spheroids could hardly result in these protrusions, they are excellent candidates for the identification of invasive protrusions. Accordingly, in the following two-parameter justifications, the thresholds of h (18 μm) and r_{htw} (0.55) are selected to include the majority of upper-right corner domains while excluding interference from the intense bottom-left corner domains (i.e. peak probability > 0.003).

Although two-parameter justification gives excellent results for identifying invasive protrusions, finding the correct two-parameter thresholds is more complicated. To simplify parameter selection, single-parameter justifications are also applied. Here, each threshold has to be higher to avoid the intense probability domains (i.e. peak probability < 0.003) next to the bottom-left corner, i.e. 20 μm for h and 0.6 for r_{htw} (see SI Sec. VII for details of parameter thresholds for all spheroids in the experiments). Nevertheless, single-parameter justifications also select rare protrusion events and are easier to use, but the selection of protrusions is slightly different than that by means of two-parameter justification.

With these thresholds for h and r_{htw} in hand, the number of protrusions related to collective tumor cell invasion were counted for each spheroid per time snapshot. Fig. 4(b) displays the trajectories of occurrences over time. It is clear that the first protrusions of this U87 spheroid with the aforementioned characteristics appear between 40 and 50 min. This suggests the t_{pti} be 40 min (from both two-parameter justification and r_{htw} value) and 50 min (from h value), consistent with that from the r_{pta} and d_{avg} measurements (Fig. S3(d)). This consistency suggests the success of the thresholds for h and r_{htw} as defined in Fig. 4(a). Therefore, large value of h and high value of r_{htw} are the morphological characteristics of invasion protrusions from tumor spheroids. These features provide an experimental method for identifying the invasiveness of spheroids for further investigation, and in our opinion, the two-parameter justification gives the best selection.

The above approaches are suitable for application to various types of tumor cells and have also been applied to MDA-MB-231 and H1299 cells. In all cases, the values of t_{pti} measured by morphological

![Fig. 4. Variations in the protrusion height (h) and height-to-width ratio (r_{htw}) of U87 spheroids, and the results for transition time (t_{pti}) of three cell lines. (a) The probability distribution of h and r_{htw} measured for U87 spheroids. Here, the large dense domain at the bottom-left corner is attributed to protrusions with small h and low r_{htw}. (b) The occurrence of protrusions identified by either double or single parameters from (a) vs. the imaging time. The dashed lines indicate the identified transition points: 40 min from double-parameter justification and from r_{htw} > 0.6, and 50 min from h > 20 μm. (c) The average t_{pti} obtained from spheroids (n = 3) of U87 cells, H1299 cells and MDA-MB-231 cells without (gray column) and with (black column) DRR1 inhibitor 7h, and H1299 cells of bright-field images (white column). Data are presented as means ± SD of three independent samples. Values of t_{pti} were 47 ± 5 min (without 7h) and 61 ± 2 min (with 7h) for U87 cells, 61 ± 16 min (without 7h) and 97 ± 10 min (with 7h) for MDA-MB231 cells. For H1299 cells. Values of t_{pti} were 64 ± 14 min (fluorescence, without 7h) and 89 ± 3 min (fluorescence, with 7h), and 69 ± 10 min for bright-field images corresponding to fluorescence images without 7h. *P < 0.05.](https://example.com/fig4.png)
Y. He, et al.
BBA - General Subjects 1864 (2020) 129460

parameters r_{pti}, d_{ad}, h, r_{ladv}, and the combination of h and r_{ladv} from the series of fluorescence images give consistent results for each cell line (see details in Table 1), where the variations in r_{pti} among spheroids are within the experimental time resolution. Such variations are due to spheroid variations and, inadvertently, differences in their culture conditions. Nevertheless, the average of multiple approaches gives a better measurement of r_{pti} than the single-parameter justifications, by avoiding accidental measurement errors. All experiments were at least repeated three times, the r_{pti} from these measurements ($n = 3$) are summarized in Fig. 4(c).

For further validation, we have measured the change in r_{pti} of tumor spheroids upon drug application. Discoidin domain receptor 1 (DDR1) is a receptor-tyrosine kinase widely expressed in many cancers [44–46]. Overexpression of DDR1 has been demonstrated to promote invasion and migration of tumor cells [47,48]. In contrast, DDR1 inhibitors are expected to depress tumor-cell invasion. 7rh (SML1832, Sigma-Aldrich, USA) is a DDR1 inhibitor and has been proved to decrease the invasion of glioma tumor, lung cancer, and breast cancer cells and nasopharyngeal carcinoma cells [49]. Treatment with 7rh at 5.0, 10.0, or 20.0 μM inhibited cell-matrix adhesion within 2 h [50]. When 7rh (8 μM) was applied to U87, H1299 and MDA-MB231 spheroids, a slowdown in the PTI transition was observed. Fig. 4(c) displays the results without 7rh and with 7rh treatment, and the change in r_{pti} is consistent with each other. However, since image processing for bright-field images to distinguish the spheroid boundary and background is more difficult than that for fluorescence images, spheroid boundary was extracted manually. Further improvements to bright-field image processing are under way, potentially for future applications to patient primary tumor cells, which are non-fluorescent. Additionally, this approach suggests that cell collective invasion is highly possible to invade into ECM as protrusions. On the other hand, in case of a sheet-like manner invasion, which might not be well coped with our quantification approach, further development may be needed.

4. Conclusions

In summary, a home-built living cell incubator was designed and constructed on top of an optical microscope to provide a uniform temperature and a stable culture environment for extended tracking of the PTI transition of tumor spheroids. Via 3-D in vitro models, spheroids of glioma tumor, lung cancer, and breast cancer cells were obtained and transferred into a medium of collagen I gel, where the PTI transition took place. Using serial images of these spheroids, a systematic, morphology-based quantitative approach was developed and utilized to identify the transition time. We used morphology parameters r_{pti}, d_{ad}, h, r_{ladv} to characterize the PTI transition and obtain consistent values of r_{pti} for each cell line. We believe two-parameter (h and r_{ladv}) justifications to be the best for identifying the beginning stage of invasive protrusions, while other parameter justifications could help to ensure the precise measurement of r_{pti}. In contrast, changes of parameter r_{pti} and d_{ad} are not sharp during PTI transition, hence parameter h, r_{ladv}, the combination of h and r_{ladv} are better in this manner. The timely identification of invasion protrusions could also assist further investigations of collective invasion mechanism, the suppression of U87, H1299 and MDA-MB-231 cells invasion by DDR1 inhibitor 7rh have been readily quantified as an increment of r_{pti}. As the bright-field images may also be applicable, this approach has potential applications for primary tumor cell investigations, and could become a highly practical technique for rapid diagnosis.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11674043 and 11604030), the Fundamental Research Funds for the Central Universities (2018CDJDL0011), and the Fundamental and Advanced Research Program of Chongqing (Grant #cstc2018jcyjAX0338), China.

Declaration of Competing Interest

We have no conflict of interest.

Appendix A. Supplementary data

See the supplementary material for further details of U87, H1299, and MDA-MB-231 spheroids. Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbagen.2019.129460.
References

